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Categories and Particulars: Prototype Effects in Estimating Spatial Location

Janellen Huttenlocher, Larry V Hedges, and Susan Duncan
University of Chicago

A model of category effects on reports from memory is presented. The model holds that stimuli are
represented at 2 levels of detail: a fine-grain value and a category. When memory is inexact but
people must report an exact value, they use estimation processes that combine the remembered
stimulus value with category information. The proposed estimation processes include truncation
at category boundaries and weighting with a central (prototypic) category value. These processes
introduce bias in reporting even when memory is unbiased, but nevertheless may improve overall
accuracy (by decreasing the variability of reports). Four experiments are presented in which people
report the location of a dot in a circle. Subjects spontaneously impose horizontal and vertical
boundaries that divide the circle into quadrants. They misplace dots toward a central (prototypic)
location in each quadrant, as predicted by the model. The proposed model has broad implications;
notably, it has the potential to explain biases of the sort described in psychophysics (contraction bias
and the bias captured by Weber's law) as well as asymmetries in similarity judgments, without
positing distorted representations of physical scales.

In this article we propose a model of category effects found in

reports from episodic memory, that is, reports of the what,

when, and where of particular experiences. For example, a per-

son may try to remember the particular properties of an object

(e.g., its size and color) or where an object was located. When

memory is inexact, people's reports are reconstructions, in-

fluenced by schematic or category information (cf. Bartlett,

1932; Brewer & Nakamura, 1984). If information is simply for-

gotten, a default value may be reported (e.g., the usual color of

that sort of object, or a location central to the area where the

object could be). If information is remembered, but inexactly,

reports may be blends, intermediate between an actual stimu-

lus value and a category value (cf. Belli, 1988).

At present, precise models of category effects on reports of

particular experiences are lacking. In proposing such a model

here, we begin with stimulus domains based on continuous

physical dimensions; object height, temporal or spatial loca-

tion, and so on. The assumptions of the model are the familiar

ones implicit in the previous examples: that memory is hierar-

chically organized and inexact, and that, in reporting, people

m ay draw from information at two levels (a particular value and

a category). The model is novel in that it posits that reports of

particular stimulus values are based on estimation procedures

that take account of prior (category) information. One of these

estimation processes, truncation resulting from category

boundaries, was described earlier in Huttenlocher, Hedges, and
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Prohaska (1988). A second estimation process, weighting with a

prototype (a central value in the category), is the focus in the

present article.

The proposed uses of category information in estimation

introduce systematic biases in reporting even when memory,

although inexact, is not itself biased. While introducing bias,

these uses of category information nevertheless may be ratio-

nal; that is, they may improve the overall accuracy of reports by

decreasing their variability. This function of categories—the

adjustment of inexactly represented stimulus values in a way

that may potentially yield more accurate estimates—has not,

thus far, been explored.

In the next section, we describe the general form of the pro-

posed model. (The mathematical formulation is presented in

the Appendix.) Then we apply the model to the estimation of

spatial location. Four experiments are presented in which peo-

ple reproduce the location of a dot in a circle: The observed

patterns of bias are those predicted by the model. The use of

category information, in our experiments, improves the overall

accuracy of reporting. After explicating the model and produc-

ing the evidence for it in the case of the representation of spatial

location, we consider the application of the model to more

general issues. Notably, the model has implications for claims of

systematic distortion in the mental representation of values

along physically measurable dimensions, including spatial lo-

cation, based on biases in reporting (e.g., asymmetries in dis-

tance judgments, the biases described in psychophysics). The

model shows that, at least in some cases, such biases in report-

ing can be explained without positing biases in the representa-

tion of physical stimulus values. In addition, the model has

implications for arguments concerning the representation of

category information in memory. In particular, at least for the

purpose of estimation, models that posit explicit representation

of category information (boundaries and prototypes) may yield

a more natural explanation than do models that posit the im-

plicit representation of categories as sets of exemplars.
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Category Model

Representation

The model makes the following claims about memory. The
first is that the mental representation of physical scales is unbi-
ased (in the sense described later). The second is that stimuli are
represented at two levels of detail: a particular (fine-grain) value
and a category. If representation is exact, information at the two
levels is perfectly coordinated (i.e., redundant). However, if rep-
resentation is inexact, the two levels provide nonredundant in-
formation (which can be combined in making estimates, as de-
scribed later).

Fine-grain coding. In the model, the representation of a fine-
grain stimulus value, no matter how inexact, is treated as unbi-
ased. That is, an inexact representation in memory can be
thought of as an underlying distribution of values centered at
the true value. In recollection, a fine-grain value is sampled
from this distribution, along with a notion of fine-grain inexact-
ness that reflects the dispersion of the distribution.1 The inex-
actness of fine-grain values depends on the degree of impreci-
sion of encoding and on the extent of loss of particular informa-
tion from memory.

Categories. A category is a bounded region that covers a
range of fine-grain stimulus values. For example, a piece of
cloth might be orange (a category) and one of a range of particu-
lar shades (a fine-grain value); in our experiments, where a dot is
shown in a circle, the dot might be in the upper left quadrant (a
category) at one of a range of particular coordinates (a fine-
grain value).

A boundary value specifies an endpoint of the range of values
included in a category. A boundary imposed by a subject (i.e., it
is not physically' present) is to some extent inexact. For example,
orange has inexact boundaries with yellow and red at the two
ends; the quadrants of the circle have inexact boundaries at the
horizontal and vertical axes reflecting uncertainty in locating
these axes by eye. Hence, associated with a boundary value is a
notion of boundary inexactness. Boundary values are used in
two ways. First, they are used to encode the category of a stimu-
lus; a stimulus that falls in the range of boundary inexactness
sometimes may fail to be encoded as being in the category.
Second, for stimuli encoded as being in a category, boundary
values of that category may be used to adjust inexact fine-grain
values in estimation (as described later).

A category includes a presumed pattern of values across the
region it encompasses; those values may be thought to form a
relatively normal distribution (i.e, with most instances in the
middle), a uniform distribution (i.e., with instances spread out
across the range), and so on. This presumed pattern is captured
by a central value (e.g., the mean or median of observed in-
stances), a prototype value. For example, the category orange
has a prototypic central shade; a quadrant has a prototypic
central location. Associated with the prototype value is a notion
of prototype inexactness that reflects the dispersion of instances
over the category: The prototype value may be used to adjust
inexact fine-grain values in estimation (as described later).

Estimation

The model makes the following claims about reporting from
memory. People recollect a fine-grain stimulus value with an

associated inexactness and also may recollect a category, in-
cluding boundary values, a prototype value, or both, each with
an associated inexactness. The model posits two estimation
procedures by which category information may be used to ad-
just a recollected fine-grain value in reporting. Next, we exam-
ine the consequences for reporting of using these estimation
procedures at different locations in a category under varying
conditions of inexactness.

To see why the use of category information may improve the
overall accuracy of reports, consider a recollected fine-grain
value near a category boundary. An inexactness is associated
with the recollection. That is, there is a range of actual stimulus
values that might have given rise to that recollection. For a
stimulus recollected as being in the category, most of these pos-
sible values lie farther into the category. Hence, the proposed
estimation procedures, which move reports farther into the cate-
gory, may improve overall accuracy even while introducing
bias. In formal terms, inaccuracy (i.e,, the variability of reports
around the true value) has two components: variability around
the mean of reports (variance) and the difference between the
true value and the mean of reports (bias). Even if bias increases,
the accuracy of reports will improve if variability decreases by a
greater amount.

Truncation resulting from boundaries. According to the
model, people may adjust recollected fine-grain values to be
consistent with a recollected category. That is, category bound-
aries constrain reports of fine-grain values to lie in the range
subsumed by that category. Yet the distribution of inexactness
for a stimulus near a boundary may extend past that boundary.
Hence, a fine-grain value falling outside the category may be
sampled. Such a value may then be adjusted, leading to a trun-
cation of the underlying unbiased distribution of potential rec-
ollections. At inexact category boundaries, the effects of trun-
cation may be averaged over the range of potential boundary
values. The truncation of the memory distribution of fine-
grain values will result in a shift of reports inward to the interior
of the category (leading to bias, but decreasing the variance of
the reports).

Bias effects resulting from truncation will be greater when
fine-grain values are more inexact. Consider having to report
the lengths of two objects that are 6 and 24 in., drawn from a set
of objects known to range from 2 to 28 in. Assume that the long
(24-in.) object is represented less exactly in memory than the
short (6-in.) object. The two objects are equally far from bound-
aries, but a greater proportion of the distribution of uncertainty
will be eliminated by truncation for a more inexactly repre-
sented value. Hence, bias for the long object resulting from
truncation at the upper boundary (at 28 in.) will be greater than
bias for the short object resulting from truncation at the lower
boundary (at 2 in.).

Finally, bias effects resulting from truncation will be less for
stimulus values near boundaries that are more inexact. When
boundaries are inexact, not all stimuli falling in the range of the
possible boundary values will have been encoded as lying in the

1 William Goldstein suggested that the inexactness of recollected

values might become accessible through sampling more than one value
al the time of recollection and examining the variation in these values.
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category. For stimuli that were not categorized at encoding,
there will be no truncation. Hence, the average bias will be less
than if all items were assigned to the same category.

Weighting with a prototype. The model holds that, as in
Bayesian procedures, people may use assumptions about how
instances are distributed (prototype and its inexactness) to ad-
just recollected fine-grain values.2 In particular, people may
adjust their reports using a combination of the recollected val-
ues at the two levels (fine-grain value and prototype), weighting
them according to their associated inexactness. This process,
analogous to regression to the mean, leads to a pattern of bias
across the entire range of true values toward the prototype (but
it decreases the variability of reports). The optimal weight of a
prototype maximizes the decrease in variability in relation to
the increase in bias. The extent to which variability can be
reduced depends on the inexactness of the fine-grain value rela-
tive to the inexactness of the prototype.

If the inexactness of fine-grain values is equal across a cate-
gory, the optimal prototype weight will be constant, leading to
a linear pattern of bias toward the prototype. If inexactness
changes over a dimension, the optimal weight of the prototype
will be greater for more inexact values, and the pattern of bias
may become noticeably nonlinear. Consider again our earlier
example of two objects 6 and 24 in. long, where inexactness in
representation is greater for the 24-in. object. If the set of ob-
jects is distributed around 15 in. (the prototype), bias for the
long object should be greater than bias for the short object,
because the prototype should optimally be given greater weight
for the less exact long object.

Finally, bias effects resulting from weighting with a proto-
type, like those from truncation, will be less for stimulus values
near boundaries that are more inexact. This is because when
boundaries are more inexact, not all stimuli falling in the range
of possible boundary values will have been encoded as being in
the category. For those that are not so categorized, there will be
no shrinkage toward the prototype. Hence, the average bias will
be less for true values in the range of boundary uncertainty.

Category effects when fine-grain coding changes. Inexactness
of fine-grain coding may increase across dimensions that in-
crease in magnitude such as length, loudness, weight, and so on.
In this case, bias resulting from truncation and prototype ef-
fects will be greater at larger magnitudes, leading to an overall
downward bias in reporting. (Note that this is true of the exam-
ple of the 6- and 24-in. objects referred to previously) This bias
is not due to distortions of fine-grain coding but rather to cate-
gory effects that are larger when coding is less exact.

There is another way in which downward bias may arise for
dimensions that increase in magnitude. When inexactness in-
creases markedly along a dimension, people may use larger
fine-grain units in coding stimuli (e.g., a longer object may be
measured in feet rather than inches). Depending on where the
shifts to larger measurement units occur, this may lead to a
pattern of reports that diverges increasingly from physical val-
ues (downward bias). Huttenlocher, Hedges, and Bradburn
(1990) found such a pattern of downward bias resulting from
people's use of successively larger multiples in estimating the
number of elapsed days since a target event (e.g., 7,14,30, and 60
days). If such larger units do not encompass (i.e., coexist with) a

range of fine-grain values, they are not categories in the model;
rather they are less refined fine-grain units.

Consider category effects when the units used in fine-grain
coding increase in size across the region encompassed. Variabil-
ity will be less for larger units (eg., if a 16-in. object is always
described as 12 in., i.e., 1 foot) than for smaller units (e.g., if a
16-in. object may be described as 10,11,12,... ,22 in). Hence,
category effects will be smaller when rounded values are used.
Although the downward bias resulting from category effects
(weighting with the prototype or truncation as a result of the
upper boundary) will be smaller for rounded values, those ef-
fects will be superimposed on the downward bias arising from
the shifts to successively larger rounded values (see Hutten-
locher et al, 1990, for details).

Applying the Category Model to the Coding of Location

The literature on spatial memory provides evidence of bias in
reports of item location. An obvious interpretation is that the
representation of spatial location is distorted (i.e., that it does
not correspond to objective measurement). However, the cate-
gory model just referred to suggests an alternative: that item
location is coded at two levels of detail, each of which is unbi-
ased although inexact, and that bias arises in combining infor-
mation from the two levels to produce an estimate.

Although existing studies show that simple metric models are
inadequate, models that make precise predictions about the
nature of bias effects have not appeared in the literature. Judg-
ments of distance may be over- or underestimated (e.g, Baird,
Merrill, & Tannenbaum, 1979; Baum & Jonides, 1979). They
are affected by the presence of boundaries or barriers between
items (Kosslyn, Pick, & Fariello, 1974; Newcombe & Liben,
1982; Thorndyke, 1981) and by the presence of reference points
(Holyoak & Mah, 1982; Sadalla, Burroughs, & Staplin, 1980).
Judgments of distance and orientation are affected when a
space is hierarchically organized (i£., involves more than one
unit, neighborhood, state, and so on). Orientation judgments
are distorted to reflect the relative orientation of the units (Ste-
vens & Coupe, 1978). Distance judgments are similarly dis-
torted, being under- or overestimated depending on whether
the judged locations are in the same unit or in different units,
respectively (MacNamara, 1986). Distortions of distance are
found whether the boundaries between units are explicit or are
only implicit (Hirtle & Jonides, 1985; MacNamara, Hardy, &
Hirtle, 1989). These distance judgments correlate with the re-
sults of priming studies showing that the degree of association

2 Note that the Bayes estimate for normal distributions of true val-

ues, when the distribution of errors is unbiased (and normal), is a linear

combination of the mean (prototype) and the fine-grain value (recollec-
tion). Although biased, the Bayes estimate is more accurate than the

recollection alone (see James & Stein, 1961). This remains true as the

distribution of instances becomes less peaked (i.e., approximates a
uniform distribution). Furthermore, shrinkage toward any of a large
range of values interior to a category, not just the mean, increases

accuracy (Deeley & Lindley, 1981). Hence, in a broad range of cases it
may be optimal not to simply report a recollected fine-grain value, but
rather to assign a nonzero weight to the prototype.



PROTOTYPES IN ESTIMATING LOCATION 355

among items belonging to the same unit is greater than that
among items in different units (MacNamara, 1986; Maki, 1981;
Wilton, 1979). The latter result is supported also by greater
amounts of clustering in free recall of items located within a
unit (Hirtle & Jonides, 1985; MacNamara et al, 1989).

A study by Nelson and Chaiklin (1980) provided the impetus
for applying our category model in the spatial domain. These
investigators found bias in reporting location in a very simple
case (a single dot within a circle). Their findings suggested to us
that location in even the simplest of spaces may be represented
at more than one level of detail. The simplicity of their task was
attractive to us in that the complexity of the spaces explored in
much of the existing spatial literature may have made it difficult
to examine precisely the relations between spatial organization
and response bias, even if these relations are simple. Nelson and
Chaiklin presented a dot on a diameter line within a circle (at
different angles on different trials). Then they removed the dis-
play and had subjects reproduce the location of the dot in a
comparable display. In reporting errors, they divided the circle
into an inner ring, a middle ring, and an outer ring, and exam-
ined assignments for dots with different actual locations. Errors
were not symmetric around the true locations of the dots;
rather there was a systematic tendency to misplace dots toward
the circumference line, except near that line.

Nelson and Chaiklin (1980) proposed three postulates to ex-
plain the observed bias in dot placement: that the circumfer-
ence serves as a landmark leading to accurate placement of dots
proximal to it; that there is a systematic bias toward landmarks;
and that the magnitude of the bias increases with distance from
landmarks. The latter two postulates suggest that distances
seem smaller for locations farther from the circumference; that
is, portions of represented space are stretched or contracted
relative to objective space. In fact, because Nelson and Chaiklin
believed that mental representation may not correspond to ob-
jective measurement, they did not present metric information
on errors.

Our model provides a more general explanation of the bias
observed by Nelson and Chaiklin (1980) than their three postu-
lates. We adopt their first postulate—that coding is more accu-
rate near physically present reference points (the circumference)
—but not their other two postulates. Instead, we posit that dot
location is coded at two levels of detail; a fine-grain location (an
idealized point) and a category (a radial segment). Bias arises
from combining information at the two levels in making a re-
sponse. In particular, we hypothesize that the fine-grain value is
weighted with a prototype central to the radial segment in esti-
mating dot location. Bias resulting from the prototype in-
creases with uncertainty of fine-grain coding. Hence, there
should be considerable outward bias for dots near the center
where location coding is inexact and a small amount of inward
bias for dots near the circumference where location coding is
precise. Nelson and Chaiklin's use of nonmetric data may not
have been sensitive enough to uncover such a trend. Our model
makes use of metric information to predict the size as well as
the direction of errors. Furthermore, our model is not restricted
to explaining bias in just one dimension (along a diameter line),
but can predict bias in reports of dot location in a homogeneous
space, as indicated next.

Coding Location in a Circle

In our studies, subjects are presented with a single dot in a
homogeneous circle. Subjects respond by indicating the loca-
tion of the dot in a comparable circle (as opposed to Nelson &
Chaiklin's, 1980, circle with a diameter line). Two dimensions
are required for coding location. We posit that coding on each
dimension is made at two levels of detail.

Coding fine-grain location. We assume that coding location
by eye is analogous to the physical measurement of location.
Either of two conventional coordinate systems can be used.
One involves a distance and an angle (e.g., polar coordinates),
and the other involves two distances along a rectangular grid
(e.g., Euclidean coordinates). In polar coordinates, a dot can be
located by imputing a line that is the shortest distance to the
circumference. The length of this line specifies radial location.
The line is perpendicular to the circumference and, if ex-
tended, would pass through the center of the circle. The orienta-
tion of this line relative to the horizontal or vertical axis speci-
fies angular location. In rectangular coordinates, a dot can be
located by imputing two lines, parallel to the horizontal and
vertical axes, respectively, between the dot and the circumfer-
ence (each in the shorter direction). Specification of location on
each dimension has two components: the distance to the cir-
cumference and the location where the imputed line crosses the
circumference. We also assume, as did Nelson and Chaiklin
(1980), that inexactness of coding will increase as the distance
of the dot from the physically present reference (the circumfer-
ence line) increases.

Error patterns at different locations will depend on which
coordinate system subjects use. Thus, examination of graphic
displays of responses at different locations should allow us to
determine which coordinates subjects use. Consider the shapes
of graphic displays of responses at different locations if polar
coordinates are used. For radial location, inexactness of coding
will increase with distance from the physically present circum-
ference line at all angular locations. Hence, graphic displays
will show a distribution of radial values that is narrow near the
circumference and increasingly wider toward the center. For
angular location, inexactness of coding may be constant across
angular locations, because there is no physically present refer-
ence for measuring angle. As radial locations approach the cir-
cumference, distances between adjacent angular locations in-
crease, so graphic displays will be increasingly stretched out
along an arc parallel to the circumference. (See displays in Fig-
ure 1A, which show the outline of hypothetical distributions of
reports at two locations.)

Consider the shapes of graphic displays if subjects use rectan-
gular coordinates. Again, inexactness of coding increases with
distance from the physically present circumference line. Hence,
graphic displays will be elliptical at all locations where the x and
y distances differ, with axes of symmetry that are parallel to the
horizontal and vertical axes. There will be greater dispersion in
the direction of greater uncertainty. On the diagonals, the dis-
plays should be circular, and should increase in size with dis-
tance from the circumference. (See displays in Figure IB, which
show the outline of hypothetical distributions of reports at two
locations.)
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Figure 1. Outlines of hypothetical distributions for polar coordinates

(A) and rectangular coordinates (B).

In addition, if values for the two dimensions are obtained
independently when measuring by eye as when physically mea-
suring location, errors in coding on the two dimensions should
be statistically independent in the coordinate system subjects
use. We investigate mathematically whether the two dimen-
sions are independent in the following way. We determine the
correlation between errors at each actual location (i.e., observed
location minus actual location). We test whether these correla-
tions are all zero by obtaining the average correlation across all
locations and by examining the variability of those correla-
tions. If measurement for the two dimensions is independent,
the average correlation should be nonsignificant, and the vari-
ability of the correlation should be small.

Coding coarse-grain location. Coarse-grain coding breaks up
dimensions into regions (categories). Before exposure to a set of
instances (i.e., dots shown in particular locations), categories
may be formed on the basis of the perceptual organization of
the figure itself or its orientation in a larger field. For a circle,
where all diameters are axes of symmetry, subdivision of the
figure depends on its orientation in a larger field. An accessible
basis for coarse-grain coding would be to orient the circle rela-
tive to the self. The body axes may be used in imposing on the
circle horizontal and vertical axes, which cross at its center. Let
us assume that subjects use polar coordinates (thus anticipating

our findings). In this case, the imputed horizontal and vertical
axes lead to radial categories, each extending between the cir-
cumference and the center, and to angular categories, each ex-
tending across a 90-degree range of angles. Radial prototypes
arising from such perceptually based categories might lie on an
imputed circle, which divides the actual circle into two equal
areas (approximately two thirds of the way from the center to
the circumference), and angular prototypes might lie in the
vicinity of the diagonals.

After exposure to a set of instances, spatial categories based
on perceptual organization may not be maintained. Recall that
the model holds that a function of categories is their potential
for improving estimates of particular values. For certain distri-
butions of instances, perceptually based categories may not be
the best for this purpose. For example, if the instances pre-
sented are unevenly distributed, with a concentration near the
horizontal and central axes, categories with boundaries at the
diagonals and prototypes at the horizontal and vertical axes
would be more effective. Here we use approximately uniform
distributions of instances. This is because our purpose is to
assess the category model, including the prototype mechanism,
not to explore how varying conditions may affect the locations
of category boundaries and prototypes.

Estimates of Location

Evidence that categories are used in estimation consists of a
pattern of bias away from boundaries. In the present case, the
boundaries lie along the horizontal and vertical axes and at the
center of the circle (where the axes cross). For locations suffi-
ciently near the boundaries, the distribution of reports of angu-
lar and radial location will be truncated. The magnitude of
these bias effects decreases rapidly with distance from the
boundary (as discussed in the Appendix and as shown in Figure
A2). These effects are negligible when the distance from the
boundary is two standard deviations or greater. To anticipate,
truncation is not a major source of bias in locating a dot in a
circle.

Use of a prototype leads to bias across the entire range of
values toward a value interior to the category. The optimal
weight of the prototype depends on the relative inexactness of
the particular remembered value and the prototype. The inex-
actness of the prototype should be constant across instances
because the distribution of instances is approximately uni-
form. The inexactness of particular values may vary for either
of two reasons. First, fine-grain values may become inexact as a
result of loss from memory. If other activities intervene before a
response is made, inexactness of representation of particular
locations should increase, and greater weight should be given to
angular and radial prototypes. Second, we assume that the rep-
resentation of fine-grain values becomes more inexact as mag-
nitude (i.e., distance from a fixed reference) increases. Hence, a
radial prototype should have somewhat greater weight near the
center than near the circumference (although this is a minor
factor in our small circle). Finally, consider prototype effects in
the region of quadrant boundaries. Because stimuli sufficiently
close to an inexact boundary sometimes will not be correctly
categorized, bias should decrease very near the horizontal and
vertical axes.
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We have argued that the use of a prototype can improve the
accuracy of reports. Hence, we consider the conditions under
which a prototype would improve estimates of angular or radial
location under the assumption of a uniform distribution of
locations, and of equal (or roughly equal) inexactness for fine-
grain values at different locations. Consider first when use of an
angular prototype will improve accuracy of reports. The vari-
ance of a uniform distribution with range a is a2/12.3 The angu-
lar range for a quadrant in the circle is aA

2 = 902/12 = 675 or
aA = 26. Thus, if the variance of subjects' recollections from
memory for angular location is greater than this, shrinkage to-
ward a prototype will improve estimation. Also consider when
use of a radial prototype will improve accuracy of reports. The
range of radial locations in our numbering scheme is 0 to 1;
hence, the variance of radial locations is oj,2 = 1 /12 = .08 3 or 15. =
.29. Thus, if the variance of subjects' recollections from mem-
ory for radial location is greater than this, shrinkage toward a
prototype will improve estimation.

Testing the Model

We present four experiments in which people place a dot in a
homogeneous circle. In Experiments 1 and 2, we demonstrate
the use of polar coordinates and the organization of the circle
into quadrants with a prototypical angular value and radial
value in each quadrant. Having shown that the pattern of bias
in reports of location is generally consistent with the predic-
tions of the category model, we test the formal model, which
explicitly incorporates prototypes, truncation as a result of
boundaries, and uncertain boundaries in Experiments 3 and 4.
In Experiment 3, we assess the predictions of the model that
uncertain boundaries will lead to decreased bias near bound-
aries by obtaining data for angular locations close to the hori-
zontal and vertical axes. In Experiment 4, we obtain data on
biases in dot placement after an interference task. This allows
us to assess the prediction that increasing the inexactness of the
representation of particular values will increase the slope of the
bias curve without affecting other aspects of its shape because
greater weight is assigned to the prototype.

Experiment 1

In the first experiment, we make a preliminary evaluation of
the coordinate system subjects use and of the proposed categori-
zation model. We show that the pattern of variability of re-
sponses across locations is that predicted for polar coordinates,
and these two coordinates are independent of one another. We
also show that item location is represented at two levels (particu-
lar value and category). There is radial bias away from the
center in a homogeneous circle (as there was in the circle with a
diameter line studied by Nelson & Chaiklin, 1980). There is
angular bias away from the horizontal and vertical axes extend-
ing across the range of values toward a prototype near the
center of each quadrant. Finally, in this task, we show that use of
a prototype improves the overall accuracy of estimation of dot
location.

Method

Subjects. Subjects were 50 University of Chicago students and staff

between the ages of 17 and 35 years, drawn from a list, maintained by

the Department of Psychology, of people interested in participating as

subjects in experiments.

Materials. The stimuli consisted of 69 8.5 X 11-in. (22 X 28 cm)

white sheets of paper. Each sheet had a 15-cm circle printed on it in
black. A black 1.5-mm dot was printed within the circular figure on

each page. No dot position was repeated in the stimulus set. The 69

dots were assigned positions uniformly distributed over the circle. The

positions taken together made up a grid with rows and columns posi-

tioned 16 mm apart, a single dot at each of the interstices. Seventeen

dot positions fell on the center horizontal and vertical diameters of the

circle: 1 dot exactly at the center of the circle and 4 at each of four radial

distances between the center and border.

Stimulus sheets were presented in a booklet with steel clip-on docu-

ment rings on the upper edge. The sheets were separated by card-

weight blank sheets. The booklet was suspended over an easel so that

subjects viewed the stimuli at about a 25-degree angular cant from the

vertical axis. Responses were made on sheets of paper laid flat on the

table between the subject and the apparatus. Stimuli were presented in

one of five random orders. Response sheets were identical to stimulus

sheets with the exception that the circles contained no dot.

Procedure. Subjects participated individually. The experimenter sat

next to the subject. The response sheets were positioned 9 in. (22.86

cm) from the table's edge. Subjects were told that we were "interested in

finding out how accurately people can reproduce the locations of dots

that they see." Each randomized stimulus set was shown to 10 subjects.

As in Nelson and Chaiklin's (1980) study, the stimulus was presented

for 1 s, followed by an 8-s intertrial interval, timed with the aid of a tape
recording to which the experimenter listened on earphones.

On each trial the experimenter placed a response sheet in front of the

subject and then said "now," which was the signal to look at the display

apparatus. Two seconds later the stimulus was displayed by lifting the

cover sheet for I s. The subject's writing hand was kept in the lap until

after the stimulus was covered. Then the subject marked the location of

the to-be-remembered dot on the response sheet. The stimulus sheet,

together with its mask, was then flipped to the back side of the display

apparatus. After responding, the subject placed the response sheet face
down on the table next to the response area, and a new response sheet

was placed in front of the subject. Five practice trials were given.
Responses were measured using a coding grid consisting of a 15-cm

circle on a transparency with a grid marked off in 1.5-mm units, or

100 X 100 square units. Each response sheet was coded by laying the

transparency on top of it, bringing the two into alignment, and noting

the x and y coordinates of the subject's dot. Reliability was checked

with independent scoring by a second person, and discrepancies were

resolved by rechecking.

Results

Rectangular versus polar coordinates. We first examined
scatter plots of subjects' responses for each of the 69 dots. Figure
2 shows the response distributions for three selected dots. In
general, as can be seen for Plots A and B, the distribution of
responses for dots farther from the center are more elongated
and parallel to the circumference, as would be expected. As can
be seen for Plots B and C, the distribution of responses is simi-
lar at very different angular locations, which are equal in dis-
tance from the center of the circle. This distribution corre-
sponds to what one would expect if subjects were using polar

3 This is because the variance of a uniform distribution that ranges

between 0 and 1 is known to be 1/12 (see Johnson & Kotz, 1970).

Hence, the variance of a uniform distribution that ranges between 0

andaisa2(l/12).
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Figure 2. Graphic displays of responses for dots

at three locations in Experiment 1.

coordinates. Furthermore, polar coordinates are consistent
with subjects' informal descriptions of dot locations in terms of
angle ("it was about 11 o'clock") and distance from the center ("it
was about two thirds of the way out"). For these reasons, we
converted the data to polar coordinates.

Error in angular location was determined for each response
by subtracting the actual angular location value of each stimu-
lus dot from the response value. Radial error was determined in
an analogous fashion. Most of the subjects' responses formed
an identifiable and reasonably compact distribution. However,
a few of the responses were so far off as to suggest that the
subject either forgot or failed to encode the dot location. In fact,
subj ects occasionally commented that they forgot the dot's loca-
tion. We used two procedures to remove such responses from
the data set. First, any response dot that was more than 45
degrees away in either direction from the angular location of
the stimulus dot was removed (2.4% of the responses). Second,
response dots that fell more than three standard deviations
from the mean of the distribution of either angular or radial
location also were deleted (an additional 1.5% of the responses).
We replicated our analyses using the "noisier," unculled data set
here and in all later experiments to ensure that these deletions
did not alter the overall pattern of responding. In no case did
they do so.

Variability of reports of angle and radius across locations. The
standard deviations of reports of radial location are largest near
the center of the circle and decrease monotonically toward the
perimeter of the circle (r= .59, p < .01). In contrast, the stan-
dard deviations of reports of angular location are independent
of actual angular location. The correlation between angular
standard deviation and angular location for points interior to
the quadrants is r = .01 (not significant). These are the predicted
patterns if people use polar coordinates. It should be noted that

standard deviations of reports of angular location at the hori-
zontal and vertical axes were in the same range as at other
locations.

Independence of dimensions: Errors in angular and radial lo-

cation. Next consider whether radial and angular location are
independent features of coding. This question was investigated
by computing a correlation coefficient between angular error
and radial error at each location and examining the distribu-
tion of these correlations across locations. First, the average
correlation (r = -.02) was not significantly different from zero.
Second, although there was a statistically significant amount of
variability in correlations across locations as measured by a
variance component estimate (see Hedges & Olkin, 1985), the
absolute magnitude of this variability was quite small (a vari-
ance component of .015). To anticipate, similar analyses per-
formed for Experiments 2, 3, and 4 also show that angle and
radius are independent dimensions. Hence, the dimensions are
examined separately in this article.

Bias in angular reports. The dots that are located directly on
the vertical and horizontal axes at 8 = 90 degrees, 180 degrees,
270 degrees, or 360 degrees showed little angular bias, espe-
cially on the vertical axis. For the vertical axes (at 90 degrees
and 270 degrees), the mean of reports differed from the actual
by 0.9 and -0.2 degrees, respectively. For the horizontal axes (at
180 degrees and 360 degrees), the mean biases were 2.2 and 5.9
degrees, respectively. In contrast, bias for those points close to
but not on the axes is between 8 and 10 degrees.

Because the variability of reports was constant across loca-
tions, the relation between bias and actual angular location
should be linear. Figure 3 shows the mean of the angular re-
sponse errors for each stimulus dot plotted against the actual
angular location of the stimulus. The figure shows that essen-
tially the same pattern is repeated within each of the four quad-
rants. (For ease of reference, we refer to the quadrants as I, II,
HI, and iy beginning with the upper right and progressing
counterclockwise around the circle.) Within each quadrant
there is a strong linear relation between angular error and ac-
tual angle (r = -.95, -.96, -.88, and -.97 in Quadrants I, II, III,
and iy respectively, each p < .001). The discontinuous function
in Figure 3 indicates that, within each quadrant, estimates are
biased away from the actual dot locations in a direction toward
the center of each quadrant. The slopes of the empirical regres-
sion lines of angular bias on actual angle are also similar in each
quadrant (b = -. 16, -. 18, -.20, and -.20 in Quadrants I, II, III,
and iy respectively). In each case the regression line intersects
zero near the angle corresponding to the middle of the quad-
rant. This relation implies that within each quadrant responses
are biased away from the horizontal and vertical axes and to-
ward a neutral point near the angular center of the quadrant.

The neutral (prototypic) angular values estimated from the
within-quadrant regressions were at 6 = 61 degrees, 142 degrees,
235 degrees, and 311 degrees, respectively, quite close to numer-
ical angular centers of the quadrants located at 45 degrees, 135
degrees, 225 degrees, and 315 degrees, respectively. Only in
Quadrant I does the neutral point estimated from subjects' re-
sponse dots differ significantly (p < .05) from the angular center
of the quadrant. This pattern of results arises in later experi-
ments also; the prototype in the upper right quadrant is not at
the actual middlemost value. Although our concern here is with
subjects' use of prototypes rather than with the particular value
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Figure 3. Mean angular bias in responses as a function of stimulus location for Experiment I.

(Solid lines are within-quadrant regression lines of angular bias on angular location.)

of those prototypes, it should be noted that this upper right
quadrant effect does not depend on how the circle is presented
or on the mode of response, because these varied across experi-
ments.

The strong linear relation between bias and actual location
depicted in Figure 3 provides strong support for the hypothesis
that subjects use prototypes. The uncertainty of reports is too
small to produce substantial bias from truncation at quadrant
boundaries even for those dots nearest the boundary. That is,
the actual angular locations of points not on the axes are more
than two standard deviations (of the distribution of reports for a
single dot) from the axes, so truncation at the boundaries will
necessarily be negligible.

Bias in radial reports. The uncertainty of reports is largest
near the center of the circle and decreases toward the circumfer-
ence. Hence, bias will be greater near the center. Figure 4 shows
the bias in reports of radial location. The mean error in reports
of radial location for each stimulus dot is plotted against the
actual radial location of the dot. Radial distances have been
scaled to reflect the proportion of the distance between the
center of the circle and the circumference. Hence, r = 0 at the
center of the circle and r = 1.0 at the circumference. The plot
shows that reports for points located near the center of the circle
exhibit substantial bias in the outward direction, whereas re-
ports for points near the circumference of the circle show no
obvious bias.

The location of the prototype is at the point of zero bias
within a category. Thus, we identify the prototype as the point
at which the bias curve crosses zero. Here and in later experi-
ments, we examined the zero points estimated from a series of
nonlinear approximations and a linear fit and determined that
they did not differ appreciably. Consequently, we used the
simpler linear approximation to estimate prototype location.
The slope of the empirical regression line of radial bias on
actual radius is b = —.066, p < .01. The estimate of the neutral
point thus obtained was at a radius of .91 with a 95% confidence
interval (computed using Feiller's theorem) of .88 to .94. This
value is sufficiently close to the circumference so that there is no
possibility of detecting inward bias toward the prototype. A
possible explanation of the location of the radial prototype is
that, because subjects used polar coordinates, their notion of a
uniform distribution may be of a distribution that is uniform in
radius and angle. Such a distribution would have fewer dots
near the periphery than a distribution that is uniform in rectan-
gular coordinates. Thus, the distribution we presented appears
more densely concentrated toward the periphery than toward
the center of the circle. This can be seen clearly in Figure 4,
which shows that the largest concentration of dots is at radii of
at least .8. Furthermore, the set of points presented included
some points that were extremely close to the circumference line.
Therefore, it would not be surprising if subjects formed a proto-
type lying near the circumference.
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Figure 4. Mean angular bias in responses as a function of stimulus location for Experiment 1.
(The solid line is the regression of radial bias on radial location.)

Advantages of angular and radial prototypes. Typical stan-

dard deviations of reports of angular location were aR = 10 or a

variance of q,2 = 100. However, the reports exhibited shrinkage

toward the prototype as evidenced by the slope X of the regres-

sion of angular bias on angular location. The variance of the

report is X2 times the variance of the recollections from mem-
ory <jj/. Thus, au

2 = qR2/X2. Given a typical shrinkage (slope)

coefficient of \ = .2 and a typical value of qj,2, we compute that

a typical value of uM
2 is nM

2 = 100/(.2)2 = 2,500. Because this is

much larger than aA
2 — 675, the variance of the distribution of

true angular locations, shrinkage toward angular prototypes in

each quadrant should produce a more accurate report than one

based on fine-grain recollection alone. The values of the ob-

served slope of radial reports as a function of actual radius isX =

-.066, and values of the variance of observed reports of radial

standard derivation are at least .025, which implies a standard

derivation of uncertainty on recollections of at least (.025)2/

(.07)2 = .13. Because this is much larger than the variance of

actual radial locations aR
l = .083, the use of the radial prototype

should produce a more accurate report than one based on fine-

grain recollection alone.

Experiment 2

In the second experiment, we present a distribution of dots

that is more nearly uniform in polar coordinates, because the

analysis of the data in Experiment I indicated that a polar coor-

dinate system more nearly described the way subjects estimated

dot locations. One purpose is to determine whether this will

result in a radial prototype farther from the circumference than

in Experiment 1. In addition, to obtain more systematic data at

certain angular and radial locations, we include a set of dots on

the diagonals. Although there was no angular bias at 45 degrees

in Experiment 1 except in one quadrant (items are moved from

both directions toward 45 degrees), only a few dots were posi-

tioned at approximately 45 degrees. In addition, graphic dis-

plays on the diagonals will provide further evidence as to the

use of polar coordinates, because these displays should be strik-

ingly different in the two coordinate systems. Distances along

the two rectangular coordinates are equal on the diagonals, so

the displays should be circular for all radial locations. The sizes
of these circular displays should be smaller near the circumfer-

ence. In contrast, for polar coordinates, the displays along the

45-degree axes should be more elongated along an axis parallel

to and near the circumference.

Method

Subjects. The 25 subjects in this study were selected in the same way
as those in Experiment 1.

Materials. A total of 128 dots was presented. A basic set of 80 dots
assigned using polar coordinates was included. In addition, 48 filler
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dots lying at intermediate positions were added to create a more uni-

form density of dots over the surface of the circle. This was because

when we viewed the basic set of 80 dots in an ensemble, the distribution

of locations looked so nonuniform that we thought the subjects might

notice the differences in density. The basic 80 dots plus the filler dots

represent a compromise set, intermediate between uniformity in polar

coordinates and uniformity in rectangular coordinates.

Consider first the basic set of 80 dots. These were placed at 20 differ-

ent angular distances from zero around the circle. Within each quad-

rant of the circle, five angular locations were selected as follows: 8

degrees in toward the center of the quadrant from each of the two axes

bordering it, 26.5 degrees in from each of the axes, and the 45-degree

angle within the quadrant. In choosing dots near the major axes, we

obtained pilot data that indicated that angular distance must be 8

degrees from a horizontal or vertical axis for subjects to reliably deter-

mine in which quadrant a dot was positioned. The remaining angular

positions in each quadrant were set exactly halfway between 8 degrees

and 45 degrees. Four radial positions were used based on proportions

of the distance between circle center and the perimeter, at .3, .5, .7, and

.9 of the way from center to perimeter. The pilot data indicated that

radial distances must be .3 of the way from center to perimeter for

subjects to reliably specify the quadrant. The other radii were chosen so

as to cover the distance to the circumference line.

Forty-eight filler locations increased the uniformity of dot locations

over the circle. Twelve locations were added to each quadrant, four at a

radial distance of .6, and eight at .8 of the way between the center and

the perimeter. The angular locations for the four .6 locations were 17.0

degrees and 35.5 degrees toward quadrant center from each of the

border axes. For the eight .8 locations, the angular locations were 14

degrees, 20.5 degrees, 32.5 degrees, and 39 degrees in from each of the
axes.

Procedure. Both presentation of stimuli and collection of subjects'

responses were automated through the use of a Zenith microcomputer

with a graphics cathode-ray tube (CRT) and a digitizing tablet. The 128
stimulus dots were each presented within a 15-cm circle on a Zenith flat

screen 14-in. graphics monitor (ZCM-1490). Because the monitor's

image resolution was insufficient to present a perfectly rounded circle,

we produced the stimulus circle on a transparent acetate, which was
superimposed on the monitor screen. Subjects viewed the stimulus dot

within this overlay circle. The monitor was in inverse video mode, so
the dot appeared dark on a light background. The monitor was posi-

tioned so that the center of the stimulus circle was just an inch or two

below subjects' eye level and about 2V4 ft away.
Responses were collected using a Scriptel high-resolution, clear-

glass digitizing pad on which the subjects responded with a stylus. A

15-cm circle printed on a white background was positioned under the

clear pad. Subjects responded by using the stylus to indicate locations

within this circle. The Scriptel stylus is held like a pencil. A small tip at
the end, when depressed against the digitizing pad, magnetically sig-
nals the coordinates of the indicated location to the computer, which

then stores these responses (paired with the actual locations of the

stimulus dots). The pad was positioned on a response surface, which
slanted down toward the subject at an angular cant of approximately 25
degrees from the horizontal axis. The top edge of the pad was 5 in.

below the CRT screen. Subjects were instructed to hold the stylus down

at their sides between trials. The instructions described the purpose of

the experiment and the importance of accuracy, as in Experiment 1.
The presentation intervals and practice trials were identical to those

in Experiment 1. Order of presentation was randomized for each sub-

ject. A short beep signaled that a dot was about to appear. Each dot was
on screen for 1 s, during which time the subject's writing hand was kept
at his or her side. After the dot disappeared, the subject indicated its

location on the response circle. If for any reason the subject failed to
respond in the allotted time, the dot was presented again on a subse-

quent trial. Otherwise, subjects saw each dot location only once.

Results

The graphic displays in Figure 5 show two points on one of

the diagonals. The shapes of these displays show clearly that

subjects use polar coordinates. If rectangular coordinates are

used, both the outer and the inner displays should be circular,

and the outer display should be the smaller one. In contrast, if

polar coordinates are used, the outer display should be parallel

to the circumference; it should be more spread out along the

circumference than the inner display (but less spread out in

terms of radial values). Clearly, these displays are as expected

for polar coordinates.

As in Experiment 1, analyses were performed after extreme

outliers from the distributions of estimates for each dot were

culled from the data set. This resulted in removal of 2% of

responses. In addition, .9% of responses that fell more than

three standard deviations from the mean of either angular or

radial location also were deleted.

Independence ofdimensions. As in Experiment 1, radius and

angle proved to be independent features of coding. The average

amount of angular bias bears no systematic relation to the

amount of radial bias. The average correlation between angular

error and radial error for Experiment 2 was not statistically

significant (r = —.01), and the variance component measuring

variation of correlations across locations was quite small (.013).

Bias in angular reports. The pattern of bias in angular error

for Experiment 2 is the same as in Experiment 1. As in Experi-

ment I , the standard deviation of reports of angular location

appears to be independent of actual angular location (r = . 15,

not significant). Consequently, the relation between angular

bias and actual angle would be expected to be linear within

quadrants. The plot of mean angular error against actual angle

in Figure 6 again shows that, within each quadrant, responses

Figure 5. Graphic displays of responses for dots

on a diagonal in Experiment 2.
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Figure 6. Mean angular bias in responses as a function of stimulus location for Experiment 2.
(The solid lines are within-quadrant regression lines of angular bias on angular location.)

for dots located within quadrants are biased away from the hori-

zontal and vertical axes and toward a point near the angular

center of the quadrant. As in Experiment 1, the linear relation is

very strong in each quadrant (r = -.90, -.96, -.88, and -.92 in

Quadrants I, II, III, and IX respectively). The slopes of the em-

pirical regression lines are quite similar to those found in Ex-

periment 1 (b= -.14,-.20,-.19, and-.12 in Quadrants I, II,

III, and IX respectively). In each quadrant, the regression line

intersects zero in the regions of the angular centers of the quad-

rants. The estimated points of zero bias are 8 = 73 degrees, 145

degrees, 217 degrees, and 313 degrees, respectively. As in Ex-

periment 1, only in the first quadrant was the prototype value

significantly different from the angular center (p < .05).

Bias in radial reports. The standard deviation of reports of

radial location was even more strongly related to radial location

than in Experiment 1 (r = -.92, />< .01). The plot in Figure 7

shows that reports about points located near the center of the

circle are substantially biased in an outward direction, whereas

reports about points near the circumference are slightly but

clearly biased inward. As discussed previously here, the relation

between actual radius and bias in reports of radial location is
not strictly linear. \et we use a linear fit to estimate the location

of the radial prototype. The slope of the empirical regression

line of radial bias on actual radius is ft = —.05, p < .01, and the

point of zero bias estimated using a linear approximation is .66.

It should be noted that because the dots were shown on a CRT

screen and the circle was an acetate overlay, the dots appeared

somewhat behind the circle. It is at least possible that dots near

the circumference line were judged to be farther away from that

line than if they had been on the same surface. Hence, there

could be greater inward bias and a lower estimate of the neutral

point than would otherwise be found. Thus, more data on ra-

dial prototypes are needed.

Advantages of angular and radial prototypes. As in Experi-

ment 1, the use of the prototypes improved the accuracy of

reports of angular location. The typical standard derivation of

angular reports of aR = 10 and typical slopes of bias on actual

angular locations of \ =. 2 once again implied variance recollec-

tions for memory of angular location on the order of 2,500, a

much greater value than the variance of actual angular loca-

tions. Similarly, the typical standard deviation of radial reports

was aR = .025, and the slope of radial bias on radial location was

A = -.06, which implied a variance for recollections of radial

location on the order of. 13, much greater than .08, the variance

of actual radial values. Hence, the use of angular and radial

prototypes improved the accuracy of reports.

Experiment 3

The third experiment was designed to determine the precise-

ness of the subjective quadrant boundaries by introducing dots
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Figure 7. Mean radial bias in responses as a function of stimulus location in Experiment 2.
(The solid line is the regression of radial bias on radial location.)

with locations close to the boundaries. The pattern of angular

bias across the quadrant is modeled to determine whether the

location of the prototype and steepness of the slope are similar

to those in Experiments 1 and 2, except near the boundaries. In

addition, we examine further the radial prototype using a pre-

sentation where the circle appears in the same plane as the dots.

Method

Subjects. The 25 subjects in this study were selected in the same way
as those in Experiments 1 and 2.

Materials. The stimuli consisted of 112 8.5 X 11-in. sheets, each
with a circle and dot printed on it, as in Experiment 1. The stimulus
dots were positioned as follows: 28 angular positions around the circle
were selected, 7 in each quadrant. Dots were positioned on the 45-de-
gree angle within each quadrant and at three successive intervals of 13
degrees away from 45 degrees in either direction. Thus, the theta values
within the quadrant were as follows: 6 degrees toward the center of the
quadrant from each of the two axes bordering it, 19 degrees in from
each of the axes, 32 degrees in from each of the axes, and the 45-degree
angle in the middle. Four radial positions were selected to yield an
average radial value of .5. A dot was positioned at .2, .4, .6, and .8 of the
way from center to perimeter on each angular location.

Five copies of the original stimulus set were created, and the orderof
stimulus sheets within each set was randomized. The digitizing pad lay
flat on the table in front of the subject, a response surface similar to
that used in Experiment 1. The stimulus display apparatus was on the
surface of the table on the other side of the digitizing pad from the
subject.

Procedure. The methods and procedures were the same as in Exper-
iment 1 except for use of the digitizing pad.

Results

As expected, our procedure for culling outlying responses

(more than 45 degrees from the true angular value) resulted in

the removal of more responses than in the first two experi-

ments (5.2%). Recall that radial valuesof .2 were included in this

study; this value is near the center of the circle, where small

absolute errors of radial location create large errors of angular

location. When a dot is misplaced to the other side of the center,

angular errors in the order of 180 degrees result. This indeter-

minacy of angular location very near the center of the circle is a

limitation of the polar coordinate system. The greater fre-

quency of outliers that were culled (i.e., about 2% more than in

Experiments 1 and 2) is entirely attributable to dots whose ac-

tual radial locations are .2. The errors, as expected, were in the

order of 180 degrees; such reports did not occur in Experiments

I and 2. An additional 1.2% of responses were eliminated be-

cause they fell outside the range of three standard deviations in

angle or radius.

Independence of dimensions. The amount of angular bias

bears no systematic relation to amount of radial bias. The aver-

age correlation between angular and radial bias was r - .04 (not

significant) and the variance component of correlations across
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Figure 8. Mean angular bias in responses as a function of stimulus location in Experiment 3.

(The curve is the modeled estimate of angular bias as a function of angular location.)

locations was .035. Therefore, radius and angle again appear to
be independent features of coding.

Bias in angular reports. The plot of the mean angular bias
versus the actual angular location in Figure 8 shows a pattern of
quadrant organization similar to that found in Experiments 1
and 2. Yet there is a difference in the pattern of angular bias
near the quadrant boundaries between the present results and
those in Experiments 1 and 2, notably a curvature or "hook" in
the relation between mean angular bias and actual angular lo-
cation in each quadrant. We hypothesize that the hook is a
consequence of the fact that the quadrant boundaries, imposed
by the subjects, are imprecise. For stimulus points near the quad-
rant boundary, some subjects will classify a stimulus dot as
being in one quadrant, whereas others will classify it as being in
the adjacent quadrant. In Experiment 2, the angular locations
nearest the boundary were 8 degrees away, and only 2.7% of the
reports misclassified stimuli into the adjacent quadrant. In con-
trast, in Experiment 3 where the actual angular locations near-
est the boundary were only 6 degrees away from it, 10.6% of the
reports of angular locations nearest the boundary were misclas-
sified.

Subjects' responses will depend on the quadrant in which the
subject classifies the stimulus. That is, reports by subjects who
misclassify the stimulus will be weighted with the prototype for
the quadrant in which they classify the stimulus. Thus, the re-
ports for locations nearest the boundary reflect some individ-
uals who classify the stimulus into the correct category and

whose responses correspond to the linear relation between ac-
tual location and reports for that category. Some of the reports
(an average of 10.6%) are misclassified, and reflect subjects
whose responses correspond to the linear relation for the adja-
cent category. Our regression model for uncertain boundaries
estimates the regression coefficients in each category under the
assumption that the mean report at each location is generated
by a combination of some reports that are correctly classified
(and generated by the correct quadrant's linear regression) and
some that are incorrectly classified as being in the adjacent
quadrant (and generated by that quadrant's linear regression).
The proportions of each are determined by the proportion of
misclassifications. Note that the model for uncertain bound-
aries produces results identical to simple regression analyses
within quadrants when applied to the data from Experiments 1
and 2 where no points had angular locations near quadrant
boundaries.

The curve in Figure 8 is the estimate derived from our model
for uncertain boundaries (see the Appendix). Using this model
the estimated regression slopes are b = -.22, -.28, -.24, and
-.09 for Quadrants I, II, III, and iy respectively. The estimated
angular locations of zero bias are 6 = 75 degrees, 138 degrees,
214 degrees, and 330 degrees, respectively (again only the neu-
tral point in the upper right quadrant differs from the middle-
most value). Note that the pattern of these estimated values
from the model closely parallels that of the empirical results in
Experiments 1 and 2.
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Figure 9. Mean radial bias in responses as a function of stimulus location for Experiment 3.

(The solid line is the regression of radial error on radial location.)

Bias in radial reports. The general pattern of radial bias as a

function of actual radius is similar to that found in previous

experiments. The standard deviation of reports of radial loca-

tion was again strongly related to actual radial location, r =

—.53, p < .05. Figure 9 shows that radial bias is positive (away

from the center of the circle) for locations near the center, and

has a smaller negative (inward) magnitude for actual locations

near the circumference. Here, however, the radial location

corresponding to zero bias is nearer the center than in the

previous experiments. Regressing radial error on actual radius

yields a slope estimate of h = -. 113, p < .01. Using this regres-

sion line to estimate the radial location corresponding to zero

bias yields the radial location r = .61, and the 95% confidence

interval for the location with zero bias (computed using Feiller's

theorem) is .59 to .63. Clearly, the radial prototype is not near

the circumference line as in Experiment 1. Indeed, the proto-

type was different both from .7, the location of the radius in a

circle that contains half the area of the full circle, and from the

average radial location of the stimuli, which was.5. It seems that

the value of the radial prototype may depend on both middle-

most value (i.e., which divides the area of the circle in half) and

on the average presented value; as mentioned previously, the

details of how a prototype value arises are not explored in the

present article.

Advantages of the use of angular and radial prototypes. The

typical standard deviations of angular and radial reports were

essentially the same as those obtained in Experiments 1 and 2,

as were the slope of angular and radial bias regressed on actual

angular and radial locations. Hence, as in Experiments 1 and 2,

the use of angular and radial prototypes produced more accu-

rate reports than those based on fine-grain recollections alone.

Experiment 4

According to the model, the relative weights of the particular

value and the prototype depend on the preciseness of informa-

tion at each level. The weight of the prototype should increase

when the dot coordinates, which are particular to a trial, are

less exactly remembered. The fourth experiment tests this

aspect of our model by introducing a visual interference task on

each trial after presentation of a dot and before the subjects'

response. As memory for particular locations becomes more

uncertain because of the distractor task, the relative weight of

the prototype should increase. We used a within-subjects de-

sign, comparing performance on the dots task alone, as struc-

tured in the first three experiments (standard trials) versus per-

formance on the dual task of remembering dot location and

performing a distractor task (interference trials).

Method

Subjects. The 31 subjects in this study were selected in the same way
as those in Experiments 1, 2, and 3.

Materials. The stimuli for the standard trials consisted of eighty
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8.5 X 11-in. (21.59 X 27.94 cm) sheets of white paper, each with acircle

and a dot printed on it. The to-be-remembered locations were in the
same positions as the basic set of 80 sheets described for Experiment 2.

Subject comments during the previous experiment persuaded us that

the 40 filler locations were unnecessary to achieve the illusion of even

coverage of the circle.

As in earlier experiments, five random orders were used. The stimu-

lus display apparatus was placed on a platform on the table in front of

the subject, putting it at approximately the same height as the CRT in

Experiment 2. The response surface slanted down from the display

apparatus toward the subject at the same angle as in Experiment 2.

Responses were collected using the stylus and digitizing pad as in Ex-
periment 2.

The stimuli for the dis tractor task consisted of the same eighty 8.5 X

11 -in. sheets of white paper used in the standard trials, plus another 80

sheets, on each of which was printed a 15-cm stimulus square, divided

by lines into a 4 X 4 grid. Of the 16 square units within each stimulus

grid, 8 were randomly filled in with black, creating a pattern of black

and white units. Following each stimulus grid sheet was another sheet

displaying a response grid containing only the 4 X 4 grid, with no

blacked-out units. One unit on each response grid was marked with a

large X. The subject's task was to indicate whether the unit marked
with the Xon the response grid had been white or black on the preced-

ing stimulus grid.

The stimulus and response sheets for each trial of the interference

trials were arranged as follows: The circle with the dot in it came first,

followed by the stimulus grid and the response grid. A sheet of light

blue card-weight paper separated each sheet from the next one in the

set. Clip-on document rings held the sets of stimuli to the display appa-
ratus as before. Again, five copies of the original stimulus set were

created, and the order of stimulus sheets within each set was random-
ized.

Procedure. In this experiment, stimuli were manually presented in
the same way as in Experiments 1 and 3. For the standard trials, the

procedure was the same as in Experiment 3. For the interference trials,

the procedure was as follows. One second after the experimenter re-

vealed the stimulus dot, a new computer tone was the signal to uncover

the distractor task stimulus grid. Subjects studied the black and white

grid for 2 s before a third tone signaled removal of the stimulus grid,

together with the following blue separating sheet, thus revealing the

response grid. There were 3 s in which to recall whether the indicated

unit was white or black. A fourth tone signaled removal of the response
grid. The subject then indicated the location of the stimulus dot seen

before the intervening grid task. Finally, a triad of tones alerted the
subject that the next trial was about to begin. Thus, a new trial oc-

curred every 13s.

Subjects were run first in the standard trial format and then, follow-

ing a short break, in the interference trial format. Subjects were given

five practice trials for each task. For the standard trials, instructions

were the same as for all previous experiments. For the interference

trials, subjects were told that we were "interested in finding out how
accurately people can perform on two competing tasks."

Results

Outlying responses were culled in the same manner as in
Experiments 1,2, and 3. This resulted in deletion of 2.5% of the
reports in the standard trials plus an additional 1.0%, which fell
outside three standard deviations for angular or radial values. It
resulted in deletion of 14.6% of the reports in the interference
trials, plus an additional .9% which fell outside three standard
deviations for angular or radial values. This high percentage of
deletions in the interference trials is an effect of the distractor

task. The 14.6% of errors falling outside a 45-degree range of the
presented values are trials on which subjects forgot what they
had seen. The purpose of this study is to evaluate whether bias
slopes are steeper on interference trials than on standard trials
(because of inexactness in the representation of particular val-
ues). To be sure that the pattern of results was not altered by
excluding such a large proportion of responses, we calculated
both angular and radial bias both with and without extreme
values in comparing bias slopes in the two conditions. Al-
though the observed values were noisier for the unculled data,
the bias slopes for the interference trials are steeper for angle
and radius in both culled and unculled data sets.

Independence of dimensions. Once again, the amount of an-
gular bias bears no systematic relation to amount of radial bias.
The average correlation between angular and radial bias was r=
—.01 (not significant) with a variance component of .032 for the
standard trials, and r = .06 (not significant) with a variance
component of .029 for the interference trials. Therefore, radial
and angular location again appear to be independent features
of coding.

Bias in angular reports. For both standard and interference
trials, we found the same general patterns of quadrant organiza-
tion as in the previous experiments. The plots of mean angular
bias versus actual angular location for standard and interfer-
ence trials, respectively, are shown in Figures 10 and 11. Having
developed the model that treats quadrant boundaries as uncer-
tain (see Appendix) and applied it in Experiment 3, regression
lines for both standard and combination trials were estimated
using the model for both standard and interference trials.

Recall that we hypothesized that the slope of the regression
line of mean angular error on angular location would be greater
for the interference trials than for the standard trials. Table 1
shows the within-quadrant slopes of mean angular bias versus
angular location. Note that the slopes for the standard trials are
similar to those in earlier experiments. The slopes are signifi-
cantly (p < .01) greater for the interference trials than for stan-
dard trials in Quadrants I, II, and IV; the difference is in the
predicted direction and approaches statistical significance in
the other quadrant (III). This confirms the hypothesis that the
prototype is given significantly greater weight in constructing
responses when the distractor task increases the uncertainty of
memory for the particular. The estimated angular locations
with zero bias are 9 = 55.3 degrees, 169.4 degrees, 230.70 de-
grees, and 307.1 degrees for Quadrants I, II, III, and IX respec-
tively, in the standard trials and 6 = 49.4 degrees, 137.7 degrees,

Table 1
Regression Slopes of Angular Bias on Angular Location for
Standard and Interference Trials (Experiment 4)

Quadrant

I
II

III
IV

Standard

-.098
-.164
-.254
-.215

Interference

-.433
-.344
-.344
-.373

;s"

5.489'
2.885*
1.312
2.601*

a The t statistic for testing the significance of the difference between
regression slopes in standard and combination trials.
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Figure 10. Mean angular bias in responses as a function of stimulus location for standard trials in
Experiment 4. (The curve is the modeled estimate of angular bias as a function of angular location.)

226.5 degrees, and 311.7 degrees for Quadrants I, II, III, and IX

respective!}; in the interference trials.

Bias in radial location. The plots of mean radial bias versus

actual radial location for standard and interference trials, re-

spectively, are shown in Figures 12 and 13. The general pattern

of mean radial error as a function of actual radius for the stan-

dard trials is generally similar to that found in the previous

studies, with positive (outward) radial bias for stimulus loca-

tions near the center, negative (inward) radial bias near the cir-

cumference, and a point of zero bias in between. The pattern

for the interference trials is similar except that the slope for bias

is generally steeper. Regressing mean radial location yields a

regression slope of b = -. 11 for standard trials and b = -.36 for

interference trials. The difference between these two slope esti-

mates is statistically significant, t = 10.4, p < .001. The esti-

mated radial location zero bias is r = .74 (with a 95% confidence

interval of .71 to .79) in the standard trials, and r = .67 (with a

95% confidence interval of .65 to .68) in the interference trials.

Both of these locations are significantly greater than .60, the

mean of the actual radial locations. The relation between stan-

dard deviation of radial reports and actual radius is again quite

strong, r = — .95 (p < .01) in the standard trials and r = —.90 (p <

.01) in the interference trials.

Discussion

In this article we have presented a model of category effects

on reports of particulars. When people must report a particular

stimulus value and their memory is imprecise, they combine

remembered values with category information. Category infor-

mation is used in estimation in two ways. First, remembered

values are weighted with category prototypes. Second, esti-

mates are constrained to fall within category boundaries. Ac-

cording to the model, the amount of bias in reporting can be

predicted from the degree of inexactness in the representation

of particular values and of category values (prototypes and

boundaries). The use of an estimation process in which infor-

mation is combined across levels, we have argued, can improve

the accuracy of reporting.

We evaluated the model here in a case where subjects report

the location of an item in a bounded space (a dot in a circle). We

argued that subjects encode a dot as having both a fine-grain

location (in polar coordinates) and a coarse-grain location (a

quadrant). The evidence of quadrant coding consisted of a pat-

tern of angular bias away from the horizontal and vertical axes

and of radial bias away from the circle's center (and to a lesser

extent away from the circumference). The evidence of use of

prototypes in estimates of location consisted of a pattern of

bias toward a neutral or prototypic value within the category for

both radius and angle. When the precision of memory for par-

ticular values was decreased by presenting a distractor task, the

prototype was weighted more heavily, leading to steeper slopes

for both angular and radial bias, as predicted by the model. In

all cases, the use of a prototype in reporting increased the over-

all accuracy of estimation.
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Figure 11. Mean angular bias in responses as a function of stimulus location for interference trials in
Experiment 4. (The curve is the modeled estimate of angular bias as a function of angular location.)

When Is Category Information Used in Estimation?

In this article we have explored a function of categories not

previously examined in the literature (i£., to improve estimates

of particular stimulus values). In our studies, weighting with a

prototype does indeed improve estimation (i£., on average, re-

ports are more accurate when the prototype is used). However,

we do not yet know the extent to which category information

would be used in estimation if it did not improve accuracy or

even decreased accuracy That is, to form representations at two

levels and combine information across levels in estimation may

be a process used widely across contexts because it often im-

proves accuracy of reports. Alternatively, the process may be
context sensitive, used only when subjects believe it will im-

prove estimation.

There is some evidence that context can affect whether or not

people construct ad hoc spatial categories and what categories

they construct. B. Tversky and Schiano (Schiano & B. Tversky,

1989; B. Tversky & Schiano, 1989) found context effects on bias

in a spatial location task. They presented a spatial frame con-

sisting of a horizontal line and a vertical line forming a right

angle with a stimulus line extending outward from the corner in

different orientations on particular trials. Subjects then were

presented the frame and drew a line in the orientation they had
been shown. When the frame was described as a map, no bias

was found. When the frame was described as a graph, there was

a pattern of bias similar to ours (misplacement toward 45 de-

grees). When no information about the frame was provided,

there was bias away from both the diagonal and the horizontal

and vertical axes toward points at roughly 22 degrees and 67

degrees.

We (but not the authors) tentatively interpret these context
effects as revealing when and how people may categorize a

space. When the frame is described as a map, the space is con-

ceptualized at only one level of detail because, in a map, avoid-

ing bias at each location is more important than improving

overall accuracy at the cost of bias at some locations. In the

absence of instruction, subjects divide the frame into two cate-

gories, with a boundary in the middle (at the diagonal) and a

prototype near the center of each of these categories (at roughly

22 degrees and 67 degrees). When the frame is described as a

graph, subjects treat it as a subdivision of a larger space consist-

ing of four quadrants (categories); the frame is treated as one

of the categories, with a prototype near the center (at the

diagonal).

Representation of Category Structure

The assumptions of our model and the predictions it makes
are relevant to the understanding of category structure. In fact,

the claims of the model concern two issues that have received

considerable attention in the existing literature.

Gradedeffects. In the recent literature, there has been consid-

erable interest in what is called the graded structure of catego-
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Figure 12. Mean radial bias in responses as a function of stimulus location for standard trials of
Experiment 4. (The solid line is the regression of radial bias on radial location.)

ries (cf. Smith & Medin, 1981). The classic view is that catego-

ries simply specify necessary and sufficient conditions for

membership. Findings that indicate that stimuli differ in how

good they are as category members have been treated as evi-

dence against this classic view. Such findings include the fact

that, for different stimuli, there are differences in the amount of

time it takes to judge whether or not that stimulus is a category

member, and that people judge different stimuli to be better or

worse exemplars of a category. Let us consider how such find-

ings can be explained in the context of the model we have

proposed.

According to the present model, stimuli are represented at

two levels of detail. These can be thought of as values in two

isomorphic spaces; in one, a stimulus is represented as a point

corresponding to its particular value, and in the other, as a

region corresponding to its category. Each of these two isomor-

phic spaces has an image in the other. To judge if a particular

stimulus is a category member, a person must locate its value

relative to the category boundary. Thus, even if the region (cate-

gory space) is not itself graded, variation in the position of an

item in the category (nearness to the boundary) can lead to

graded effects of the sorts observed. Furthermore, the bound-

aries of a region (category) may be more or less exact, and this

will affect the probability of assigning items to that category.

Rather than reflecting a gradation of the category space, such

imprecision may reflect uncertainty about boundary location

within that category space.

Status of prototypes and exemplars. In the existing literature,

there has been considerable discussion of whether category and

exemplar (particular stimulus) information are represented sep-

arately in memory. In a landmark article, Posner and Keele

(1968) argued that people abstract prototypes when they form

categories from the presentation of sets of exemplars. The sort

of evidence that has been offered for prototypes concerns the

differential treatment of different stimuli, that is, the graded

effects noted previously here, (n particular, after learning a cate-

gory from a sample of stimuli, subjects are likely to recognize

(believe they have seen) stimuli near the mean of presented

values (even if they have not seen them), and may categorize

stimuli near the mean better than others. Later investigators (cf.

Brooks, 1978; Medin & Schafter, 1978) proposed an alternative

model according to which people store category exemplars and

do not generate category-level information. There is evidence

that people do retain particular stimuli, which some investiga-

tors regard as evidence against prototype models. Although

showing that a model that posits that prototypes (or boundaries)

alone are represented is not adequate, such findings do not

distinguish between models that posit only exemplars and

those that, like our model, posit both exemplars and category-

level information.

Exemplar models explain the ability to assign new items to

categories as the result of a sampling process by which those

items are compared with exemplars of the category stored in

memory. For example, if a new item has a value falling outside

the range of values of the set of instances sampled, it will not be

considered to be a category member. Thus, the sampling pro-



370 J. HUTTENLOCHER, L. HEDGES, AND S. DUNCAN

0.201-

-0.10 -

-0.15

0.0 0.2 0.4 0.6

Radius

Figure 13. Mean radial bias in responses as a function of stimulus location for interference trials of

Experiment 4. (The solid line is the regression of radial bias in radial location.)

cess gives rise to boundary information without explicit repre-
sentation of boundaries. Estes (1986) argued that the critical
difference between prototype models and exemplar models lies
in when and how category information is made available: early
(i.e., explicitly represented in memory) or late (i.e., arrived at
implicitly by means of sampling of exemplars). Existing experi-
ments do not permit differentiation of early calculation from
late calculation models. Our data show that people's reports of
particular experiences are based on a weighted combination of
a prototype and a particular value; it seems most straightfor-
ward to explain such a result by positing that category proto-
types are explicitly represented in memory before the process of
constructing estimates.

Representation of Physical Scales

Bias in spatial reports frequently has been taken to indicate
that spatial representation itself is biased. However, our model
shows how biased reports can be generated from unbiased mul-
tilevel representations. Next, we consider the model's implica-
tions for certain arguments in the literature. First, the model
predicts asymmetry in similarity judgments depending on the
direction in which two items are compared. Second, the model
predicts two well-known phenomena in psychophysics: contrac-
tion bias and the bias captured by Weber's law

Asymmetry of similarity (distance) judgments." There are
sometimes asymmetries in judgments of similarity or spatial
distance. For example, people may be asked the distance from

A to B or from B to A, or to draw the location of one item on a
map that correctly displays the location of the other item. The
fact that people's reports may depend on the direction of com-
parison has led investigators to argue that representation of
information in memory is not metric. A. Tversky (1977) sug-
gested that similarity (distance) judgments should instead be
thought of as arising from a comparison of features. He showed
that a feature comparison model can be used to judge similarity
(distance) even when the objects compared lie on a continuum.
Such a model is not constrained to yield symmetric similarities,
so it can accommodate asymmetries in similarity judgments.
Nosofsky (1991) recently argued that a model such as Tversky's
can always be derived from one that posits an underlying repre-
sentation of similarity, which is symmetric, plus a bias asso-
ciated with each of the items to be compared. Although No-
sofsky demonstrated that stimulus bias can generate asym-
metry in similarity judgments, he did not provide an
explanatory framework for such biases. Our model does just
that.

According to our model, asymmetry in similarity (distance)
judgments arise because estimates of stimulus values are ad-
justed to reflect category information. Consider a comparison
of two items in a category where one item is near the center and
the other is near a boundary. One item is fixed, and subjects

4 Nora Newcombe, a collaborator in studies of spatial development,
has been involved in our discussions of this issue.
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must either locate the other item or estimate its distance from

the fixed item. First, consider the case where the center item is

fixed at its true location. Because the location of the item near

the boundary is "shrunk" toward the center, distance will be

underestimated. Next, consider the case where the item near

the boundary is fixed at its true location. Because the location

of the central object is relatively unaffected by boundary or

prototype effects, there is not a corresponding underestimation

of distance. Hence, our model predicts asymmetries in judg-

ments of distance (similarity) depending on which object is

fixed.

Contraction bias. It is well known in the psychophysical liter-

ature that discrepancies between people's reports of stimulus

values and presented values reflect what has been called the

central tendency of judgment, first described many years ago by

Hollingworth (1910). This tendency of reports to "gravitate to-

ward a mean magnitude," which Poulton (1979) called a contrac-

tion bias, is found across a wide range of dimensions. A well-

known model that was proposed to explain this pervasive form

of bias is Kelson's (1948) adaptation-level model. His model,

like ours, posits that people's reports of particular stimuli are

based on the difference between the adaptation level and the

stimulus value. Kelson's model, which predates cognitive psy-

chology, did not explain how the observed pattern of bias might

arise. Furthermore, it is not possible to determine if the range of

data Helson discussed can be explained by our category model,

because his model is applied to stimuli whose values are already

specified on a psychological rather than a physical scale.

Weber's law. Psychological judgment of physical differences

between stimuli may vary at different points on a dimension,

notably for dimensions involving physically increasing magni-

tudes. This relation is formalized in Weber's law, which holds

that just noticeable differences in magnitude are a constant

proportion of that magnitude. Our studies deal with subjects'

reports of stimulus values, not judgments of differences be-

tween stimuli. We find a decrease in accuracy of reports (i£., an

increase in the standard deviation) with physically increasing

magnitudes. In the present study, where subjects reported radial

location, accuracy of the representation decreased as distance

from the circumference increased. In an earlier study, where

subjects reported the elapsed days since a target event, accuracy

of the representation decreased as actual elapsed time in-

creased (Huttenlocher et al, 1990).

The increased variability of reports with increases in magni-

tude along a dimension in our studies would lead to changes in

difference judgments (including just noticeable differences) at

different points on a scale. Although our reporting tasks do not

explicitly require discrimination between stimuli, discrimina-

tion is a natural extension of these tasks. In discrimination, a

subject generates (internally) a report from an uncertain mem-

ory of stimulus A and compares it with a fixed standard B. The

probability that A is reported as larger than B is a function of

the true difference between A and B and the uncertainty (stan-
dard deviation) of recollection of stimulus A. If the uncertainty

in memory (seen in the standard deviation of reports) increases

with stimulus magnitude, the true difference required for dis-

crimination with a fixed probability will be a function of mag-

nitude. If the increase in standard deviation is linear, the resul-

tant changes in discrimination will approximate the Weber

fraction.

In some psychophysical studies, as in our studies, there is an

increasing downward divergence of judgments from true values

as magnitude along those dimensions increases. In our model,

such divergence will arise if there is an increase in uncertainty

as to particular stimulus values at larger magnitudes. The

model posits two mechanisms to account for downward bias:

shrinkage toward a prototypic central value and the use of

rounding! in the measurement of larger magnitudes.

In summary, the model we have presented can explain cer-

tain discrepancies between physical scales and people's reports

of the sort described in the psychophysical literature. The

model shows that systematic bias in reporting stimulus values

can arise even if memory itself is unbiased. The general as-

sumptions about memory made in the model are familiar: that

memory is inexact and hierarchically organized, and that re-

ports from memory are reconstructions. What is novel in the

model is to posit estimation processes used to combine mem-

ory for particulars with schematic or category information in a

way that predicts just the sorts of biases described in psycho-

physics. In cases where the model completely accounts for ob-

served biases in reporting, it provides a cognitive explanation

for the systematic distortions described by psychological sca-
ling of physical dimensions.

Final Remarks

In the present article, we have presented a model of category

effects on reports of particulars, and have applied the model to

a case involving location in a simple bounded space. The model

can be applied in a broader range of cases. First, although the

case we examined had component dimensions that were inde-

pendent, the model also applies in cases where the component
dimensions are correlated. In such cases, information about

one dimension contains information about the other dimen-

sion. Consequently, accuracy in estimating values on one di-

mension can be improved by incorporating information about

values on the other dimensions. That is, use of a linear combina-

tion of information concerning values on correlated dimen-

sions will improve estimation of values on the target dimen-
sion.

Second, in our case, categories were larger measurement
units. Thus, availability of units at one level implied availability

of units at all higher levels; for example, if a location is at 35

degrees (counterclockwise) from the right horizontal axis, it is

necessarily in the upper right quadrant. The model also applies

in cases where units are nested within higher level units that are

not necessarily directly available by virtue of specifying lower

units. This is true even in certain cases of spatial location. For

example, consider the problem of finding your lost slides after a

trip in which you gave a set of talks on some university campus.
You know that you left them in the rear of a lecture hall near a

projector, but you do not recall with certainty which lecture

hall. In searching for the slides, you examine only rear locations

in a set of lecture halls. Therefore, shrinkage toward a prototy-
pic rear location specifies a multimodal distribution of loca-

tions in different rooms. A parallel situation occurs in temporal

memory; it is possible to remember the time of day, but not the
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day of the week, when an event occurred. In this case, there will
be a distribution of times around the true time of day, but
because the day is unknown, the distribution of times will be
multimodal around a particular time on different days.

A final point should be made about the model proposed here.
That is, the model provides a way of discovering category struc-
ture from patterns of bias in people's reports. Given a set of
reports from a stimulus domain, the pattern of bias in those
reports will indicate regions corresponding to boundaries be-
tween categories, including information about the inexactness
of those boundaries. In addition, the pattern of bias will indi-
cate whether the category is structured around a prototype and
where that prototype is located. Potentially then, the model we
have proposed can be used to explore the ways in which people
represent category structure.
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Appendix

A Mathematical Model of Combining Uncertain Information

Our model makes three important assumptions about representa-
tion. The first is that representations are multilevel; that is, items are

represented simultaneously in terms of units of different sizes, and
these representations are retained separately. The second is that these
representations are unbiased; that is, the average or expected value of

recollections is at the true value. The third is that representations are
inexact; that is, a representation at any level can be characterized as a
distribution with a particular standard deviation around the true

value. The model holds that bias in reports from memory is a conse-
quence of combining inexact information from different levels. Our

spatial categories are two dimensional: consequently, they must be rep-
resented by two coordinates. In our experiments, we have found that

the two dimensions (radius and angle) are sufficiently independent to
be treated separately. Hence, the discussion presents a one-dimen-

sional model that can be applied independently to each coordinate.

The model we have presented in this article is based on a set of

statistical and probabilistic considerations. This can be most precisely
and usefully stated in a mathematical form. This model is used to make
precise the statements and predictions made in the body of the article.

It is also used to estimate the slopes of the regression lines of reports of
angular location on actual angular location in the model for uncertain

boundaries. In this case, the parameters are estimated by the method
of maximum likelihood. The sections that follow state the component
parts of the mathematical form of the model and then combine them

into the overall model. First, the model is presented treating bound-
aries as if they were precisely known. A model for the constraining
(truncating) effects of boundaries is presented, and then a model for

the effects of prototypes is presented. Next, the combined effects of
prototypes and the truncating effects of boundaries are presented. Fi-
nally, the model is presented for the case involving uncertain bound-
aries.

Boundary Model

An effect of category boundaries arises because reports based on
recollections from memory are constrained to lie within a category.
Hence, the report distribution isa truncated form of the distribution of

recollections from memory. If the distribution of the recollections is
known, the bias at any actual location relative to a precise boundary
can be computed analytically. The effects of imprecise boundaries are
considered in a subsequent section.

Let the random variable M represent the recollection from memory
of an object with true location /i. We assume that Mis normally distrib-
uted about jt, with standard deviation aM corresponding to the uncer-

tainty of the information encoded in memory. The notion that mem-
ory is unbiased is operationalized by the assumption that the mean of
Mis M, the actual location. If reports R are generated from Mby means
of truncation at points a and b (that is, constraining R to lie between a

and &), then the expected value of the report R is:

E[R] =
*(*,) - *(a.)

(Al)

where a, = (a - tt)fiu, and b,= (b- rffa,, and *(x) = e^12/^ and *(x) is
the standard normal cumulative distribution function. Hence, the bias
ofR is:

Bias[jq = E[R] - M = (A2)

deviations from the boundary specified by a, then t]>(as) will be very

small. Similarly, if in is more than two or three standard deviations from
the boundary denned by b, &(bf) will be very small. If fi is more than
two or three standard deviations from both a and h (e.g., in the middle

of a category that is many standard deviations in width), then both
#(«,) and it>(b,) will be small, the right-hand side of Equation Al will
reduce to approximately ft, and R will be unbiased. Figure Al shows

the bias of R computed from Equation A2 as a function of the distance

from the boundary in standard deviation <%units. It shows that the bias
is substantial for locations near the boundary but is negligible for loca-

tions more than two standard deviations away from it.
Equation AI uses the variance <rM

2 of if to predict the expected value

of R. Note that boundaries also have an effect on the variance of R.
Consequently, when objects are located near boundaries, the variance
of R will not provide an accurate estimate of the variance of M. How-

ever, this variance can be estimated from the variance of the reports R
by means of the method of maximum likelihood using a truncation

model (see, e.g., Cohen, 1950).

Prototype Model

Let the random variable M represent the recollection from memory
of an object with true location n. Let the random variable P represent

the prototype location used by the subject to construct a response, and

let p be the true mean of prototypes across subjects. This location is
treated as random to incorporate the possibility that subjects are un-

certain about the location of the prototype. We assume that the recol-

lections from memory M have a distribution with standard deviation
oj/corresponding to their uncertainty. Because it is unbiased, the mean

of the distribution of M is *i, the true location of the object. We also

assume that the random variable P corresponding to the prototype
location is distributed about an expected prototype location p, with

standard deviation <JP corresponding to the uncertainty of the proto-

type location. Note that it is not necessary to assume that the distribu-
tions of Af and P have any particular form such as normality.

We posit that combining the recollection from memory M with in-
formation about category (prototype) P reflects the relative uncer-
tainty of recollection from memory and prototype. Specifically, we
suggest that:

K"\M+(l- (A3)

*<&,) - *(a,) '

Note that if the actual location p is more than two or three standard

where X is a weight that reflects the relative uncertainty of recollection
and prototype. We posit that X is an increasing function of D - oetaM,
and that X tends to zero as <rp/au tends to zero. This corresponds to the
assumption that the weight given to the recollection from memory

increases as the relative uncertainty of prototypes to that of the recol-
lection from memory increases. When the uncertainty of the memory
is very large (compared with that of the prototype) so that memory
provides essentially no information, we assume that subjects give es-
sentially total weight to the prototype and essentially no weight to the
memory (i.e., X = 0).

Note that although the recollections from memory are unbiased,
reports will generally be biased. This is because reports are produced
by combining unbiased information from memory with generally
biased information about category (prototype). The expected value of

the report jR is:

E[R] = E[\M] + E[(l - \)Fl
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Figure Al. Bias in reports produced by truncation at perfectly certain boundaries as a function of

stimulus location (in standard deviations of memory uncertainty from the boundary).

= X».-(1 -\)p. (A4)

Thus, the bias of R (the expected value of the report minus the actual

location) is:

Bias(fi) = E[R] - »

= ( M - , » X X - 1 > . (A5)

Two general implications follow from the form of the bias given in

Equation A5. First, the bias is exactly zero when the actual location of

the object is at the prototype. Moreover, unless X = 0, it is the only

location within the category in which bias is zero; this provides a way to

locate the prototype. Second, when the uncertainty in the location of

the prototype is large relative to that of the recollection, the bias is

small. This is because when aP/aM is small, X is near 1 . Conversely, when

the uncertainty of location of the prototype is small relative to that of

the recollection, the bias will be large.

Equation A5 also implies the form of the function relating bias to the
actual location of the object. When the ratio op/irM is constant for ob-

jects with different actual locations fj., then X is constant across /i, and

the bias is a linear function of p with slope X — 1 and intercept p(\ — X).
When a,Ji!f is not constant across actual locations /», then X also

changes with p. and the bias will not be a linear function of p. The

nature of the nonlinearity will depend on the way apfau (and hence X)

depend on /i, but qualitative predictions are generally possible given

qualitative understanding of how <rP/aM changes with it and how X
changes with aPlaM. Quantitative predictions require knowledge of how

X changes with changes in aP/aM. Because the parameters of ap , <v, and S

are not observed directly; indirect means are needed to determine their
values and the form of the dependence of X on 8. The key to determin-

ing the values of X and 6 from data on subjects' reports is that the same

prototype is used to construct reports for different objects in the same

category. Hence, the reports must be correlated even if the recollec-

tions from memory of those objects are independent.
If each subject provides reports on several objects in a category, the

magnitudes of the variances and covariances between observations are
determined by the uncertainty of the memory for each object, by the A
coefficient for each object, and by the uncertainty of the prototype
location. If the subjects each report the locations of k objects in the
same category, there are 2k + 1 parameters (k X coefficients, k aM param-

eters, and UP) to be estimated, but k variances of reports and k(k- l)/2

covariances between reports can be computed. Because the number of

covariances grows much faster with k than does the number of parame-

ters to be estimated, the information on variance and covariance can

be used to estimate all of the parameters whenever k > 3. Estimation

problems of this type are called analysis of covariance structures prob-

lems (see Bock & Bargmann, 1966), and although the particular prob-

lem that arises here has not previously been investigated, there is a

considerable body of relevant statistical work that can be adapted to

estimate a? and values of X, au, and 8 for each location (see Joreskog,

1970; Shapiro & Browne, 1987). Given estimates of 6 and A for each

actual location, we can predict the bias at any point and empirically

determine the relation between 0 and X.

A Model for the Combined Effects

of Boundaries and Prototypes

The combined effects of boundaries and prototypes are derived

from the results of the previous sections. We assume that the recollec-

tion from memory M combined with the prototype to produce a re-

sponse is consistent with the prototype. That is, we require that the
recollection M combined with prototype pc for category c lie between

the category boundaries a, and bc. This is equivalent to saying that M

will have a truncated distribution determined by the limits of the cate-
gory.

Combining Equations Al and A4 yields the expected value of the

response R (given that it is recalled as in category c)

E(R\C= c) (A6)

where a/ = (ac — M)/^M and b* - (bf — it)loM and af < bf are the boundaries
of category c. The bias of R (given that the category recalled is c) is

Bias(.R|C = c) = £(J?|C= c) - A

*(*/) -

i- 1) + J (A7)

Note that the right-hand side of Equations A6 and A7 differs from those

of Equations A4 and AS only by the last term involving a' and bc\ the

boundary locations in standardized units. If the actual stimulus loca-
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tion ti is more than a few standard deviations from both category

boundaries, virtually all of the bias will arise from the effects of proto-

types, and Equations A6 and A7 will reduce essentially to Equations A4

and A5.

Uncertain Boundaries

We posit that when boundaries are uncertain, subjects estimate or

impute the location of the boundary and proceed as if the boundary

location were known. Because the location of the boundary is uncer-

tain, these boundary estimates will vary across items for the same

subject and across subjects. Thus, when boundary location is uncer-

tain, subjects will use a distribution of boundary values in construct-

ing reports. Consequently, a distribution of effects on reports will be

produced by an uncertain boundary. The expected value of the reports

will be the average over the distribution of the potential boundary

values of the effects that would be produced for each boundary value.

As indicated earlier, boundaries define categories. Thus, uncertain

boundaries induce uncertainties in the assignment of a stimulus to a

category. This is because some of the distribution of boundary values is

consistent with classification of the stimulus in one category (e.g., just

inside the boundary), whereas other stimulus values lead to classifica-

tion of the object in an adjacent category (e.g., just outside the bound-

ary). That is, some individuals may impute a boundary value that leads

to classification of the stimulus in Category 1, whereas others may not.

Consider two adjacent Categories 1 and 2. Stimulus locations fj. < B

are in Category 1 (C = 1) and stimulus locations ̂  > B are in Category 2

(C = 2). We operationalize the idea that B is uncertain by treating B as a

normally distributed random variable with mean fi and standard de-

viation T. Assume that the categories are sufficiently large (or T is suffi-

ciently small) that the probability is zero of classification into any cate-

gory other than 1 or 2. Then the probability P{C = I'|M} that a stimulus

with location n is classified in category (' is

(AS)

The expected value of the response R for stimulus at location fj. is

obtained by averaging the expected value of the report over the distri-

bution of boundary values for each category choice and then combin-

ing the expectations according to the probability of classification into

each category. This yields:

E(R) = E(R\C = \)P{C= 1} + E(R\C = 2)P{C = 2}. (A9)

Here the expected values of the report given classification into each of

the categories are

E(R\C= 1)

-£
E(R\C=2)

= J

Wai*) -
9(ff) - $(«,')

(J9-0)

dB,

- X2)jo2-l-
*(/>/) -

(B-ft

dB,

(A 10)

where B* = (B - tilaM, p, and X, are the prototype location and the

shrinkage coefficient in Category I, and p2 and X, are the prototype

location and the shrinkage coefficient in Category 2.

One consequence of Equation A9 is that when boundaries are uncer-

tain, bias may be zero for locations at the expected value of the bound-

-0.8

.1 .5

Location
of Boundary

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
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Figure A2. Bias in reports produced by the joint effects of truncation and prototypes

for boundaries with normal distribution of uncertainty.
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ary. This is because stimuli at such locations will be classified 50% of

the time into each of the categories, and the bias introduced by both
truncation and prototypes will be of opposite signs. If the prototypes
are equidistant from the expected value of the boundary and the shrink-

age coefficients A, and X2 are the same, the bias for locations at the
boundary will be exactly zero. If the prototypes are equally far from the

expected values of the boundaries, then the bias will also be zero at a
location near the prototype because the bias resulting from truncation
will be small.

Figure A2 is a plot of the bias resulting from the joint effects of

truncation and prototype as a function of actual stimulus location
when both memory uncertainty and boundary uncertainty are nor-
mally distributed. Figure A2 shows the effect of changing the uncer-
tainty r (standard deviation) of the boundary location for a fixed mem-

ory uncertainty au. It demonstrates that when there is small uncer-
tainty about the boundary (r = . I), the bias is zero at the boundary and

increases rapidly for locations between boundaries and the prototype,
declining to zero again at the prototype location. However, when the
boundary is more uncertain (r > .5 or 1.0), the maximum bias is not as

large.

Bias Resulting From Truncation With Uncertain Boundaries

When boundaries are certain, bias resulting from truncation de-

creases rapidly with increases in distance from the boundary. If the
standard deviation of memory for particular values is small, there
should be a large area within the category for which bias is not intro-

duced by truncation at the boundaries. When boundaries are uncer-
tain, a person consults the range of potential boundaries consistent
with the category assignment already made. Boundary values in this
range are used in the truncation of memory for particular values. In
this case, bias will be less near the boundary but will be found over a
broader range (including values farther into the category) than is the
case when boundaries are certain.

Consider a stimulus in a location with an underlying distribution of
recalled values near the center of the distribution of potential bound-
aries. When the boundary is known precisely, the bias will be large.
When the boundary is known imprecisely, boundary eifects are an
average of effects produced by a distribution of potential boundary

values. Most of this distribution of potential boundaries will be farther
from the actual stimulus location than the mean boundary and, hence,
will produce smaller bias. The average of these bias values (the ob-

served bias under imprecise boundaries) will thus be smaller than the
bias near the mean, the bias observed with a precise boundary. Now
consider an actual location far from the mean of the boundary distri-
bution. If the boundary distribution has small variance (the boundary

is precise), none of the potential boundary values would produce no-
ticeable bias. However, if the boundary distribution has large variance
(the boundary is imprecise), then some of the potential boundary val-

ues may be near enough to the actual location to produce substantial
bias by means of truncation. This will lead to some overall bias be-

cause the observed bias is the average of effects reproduced by the

distribution of boundary values.
The size of the bias resulting from truncation at imprecise bound-

aries can be computed exactly for inexact boundaries when the bound-

ary uncertainty is known. Such computations confirm that the bias
will be less near the boundary but will cover a broader range (including

values farther into the category) than for exact boundaries. The biasing
effects depend on the distance from the stimulus to the mean of the
boundary distribution and on the uncertainty of both the particular
values and of the boundary.
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